Related Titles

Stolze, J., Suter, D.
Quantum Computing
A Short Course from Theory to Experiment
2008
ISBN: 978-3-527-40787-3

Matta, C.F., Boyd, R.J. (eds.)
The Quantum Theory of Atoms in Molecules
From Solid State to DNA and Drug Design
2007
ISBN: 978-3-527-30748-7

Bruß, D., Leuchs, G. (eds.)
Lectures on Quantum Information
2007
ISBN: 978-3-527-40527-5

Vogel, W., Welsch, D.-G.
Quantum Optics
2006
ISBN: 978-3-527-40507-7

Bachor, H.-A., Ralph, T.C.
A Guide to Experiments in Quantum Optics
2004
ISBN: 978-3-527-40393-6

Weidemüller, M., Zimmermann, C. (eds.)
Interactions in Ultracold Gases
From Atoms to Molecules
2009
ISBN: 978-3-527-40750-7

Leuchs, G., Beth, T. (eds.)
Quantum Information Processing
2003
ISBN: 978-3-527-40371-4

Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.
Atom-Photon Interactions
Basic Processes and Applications
1998
Atom Chips

Edited by
Jakob Reichel and Vladan Vuletić
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Contributors</td>
<td>XVII</td>
</tr>
<tr>
<td>Part One</td>
<td>Fundamentals</td>
</tr>
</tbody>
</table>

Part One: Fundamentals

1. From Magnetic Mirrors to Atom Chips
 Andrei Sidorov and Peter Hannaford

 1.1 Introduction
 1.2 Historical Background
 1.3 Magnetic Mirrors for Cold Atoms
 1.3.1 Basic Principles
 1.3.2 Experimental Realization of Magnetic Mirrors
 1.3.2.1 Macroscopic Array of Rare-Earth Magnets of Alternating Polarity
 1.3.2.2 Micro-Fabricated Grooved Magnetic Mirrors
 1.3.2.3 Micro-Fabricated Array of Current-Carrying Conductors
 1.3.2.4 Magneto-Optical Recording of Magnetic Microstructures
 1.4 The Magnetic Film Atom Chip
 1.4.1 Background
 1.4.2 BEC on a Magnetic Film Atom Chip
 1.4.3 Spatially Resolved RF Spectroscopy to Probe Magnetic Film Topology
 1.4.4 Adiabatic Splitting of a BEC for Asymmetric Potential Sensing
 1.4.5 Spatially Inhomogeneous Phase Evolution of a Two-Component BEC
 1.5 Permanent Magnetic Lattice on a Magnetic Film Atom Chip
 1.5.1 Background
 1.5.2 Basic Principles
 1.5.2.1 One-Dimensional Magnetic Lattice
 1.5.2.2 Two-Dimensional Magnetic Lattice
 1.5.2.3 Permanent 1D Magnet Lattice for Ultra-Cold Atoms
 1.5.2.4 Other Permanent Magnetic Lattices

Atom Chips. Edited by Jakob Reichel and Vladan Vuletić
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40755-2
2 Trapping and Manipulating Atoms on Chips
Jakob Reichel
2.1 Introduction 33
2.2 Overview of Trapping Techniques 34
2.3 Magnetic Traps for Neutral Atoms 35
2.3.1 Magnetic Interaction 35
2.3.2 Stability against Spin-Flip Losses 36
2.3.3 Quadrupole Traps 37
2.3.4 Ioffe–Pritchard Traps 37
2.3.5 Some General Properties of Magnetic Traps 38
2.4 The Design of Wire Patterns for Magnetic Potentials 39
2.4.1 Conductor Elements and Multipoles 39
2.4.2 Wire Guide 40
2.4.3 Conductor Cross (“Dimple” Trap) 41
2.4.4 “H”, “Z”, and “U” Traps 43
2.4.5 Finite Wire Dimensions 44
2.4.6 Maximum Confinement 46
2.4.6.1 Field Gradient 46
2.4.6.2 Field Curvature and Trap Frequency 46
2.4.7 Combining Elements: Arrays, Conveyors and Others 47
2.5 Real Wires: Roughness and Maximum Current 48
2.5.1 Effect of Wire Roughness 48
2.5.2 Heat Transport and Maximum Current 49
2.5.2.1 Wire–Substrate Interface 49
2.5.2.2 Heat Evacuation through the Substrate 51
2.6 Loading Techniques 51
2.6.1 Mirror-MOT 51
2.6.2 Magnetic Elevator 52
2.6.3 “Mode Matching” 52
2.7 Vacuum Cells 53
2.7.1 Traditional Cell 53
2.7.2 Compact Cell with Atom Chip Wall 55
2.8 Conclusion and Outlook 57
References 58

3 Atom Chip Fabrication
Ron Folman, Philipp Treutlein and Jörg Schmiedmayer
3.1 Introduction 61
3.2 Fabrication Challenges 62
3.3 The Substrate 63
3.4 Lithography 65
3.4.1 Optical Lithography 65
3.4.2 Electron-Beam Lithography 67
3.5 Metallic Layers 68
3.5.1 Deposition and Etching 68
3.5.1.1 Electroplating 68
3.5.1.2 Evaporation and Lift-Off Metallization 70
3.5.1.3 Wet and Dry Etching 72
3.5.1.4 Designing Potentials by Postprocessing the Wires 73
3.5.2 Effects of Roughness and Homogeneity of the Fabricated Structures 74
3.5.3 Special Metals 76
3.5.3.1 Alloys 76
3.5.3.2 Superconductors 77
3.5.3.3 Semiconductors 79
3.5.4 Permanent Magnets 80
3.5.5 Metal Outlook 82
3.6 Additional Features 85
3.6.1 Planarization and Insulation 85
3.6.2 On-Chip Mirrors 87
3.6.3 Multi-Layer Chips 88
3.7 Current Densities and Tests 91
3.8 Photonics on Atom Chips 93
3.8.1 Fiber-Based Integrated Optics 93
3.8.1.1 SU8 – Holding Structures 93
3.8.1.2 Fiber-Based Fluorescence Detector 94
3.8.1.3 Fiber Cavities 95
3.8.2 Micro lens and Cylindrical Lens 97
3.8.3 Microdisks and Microtoroids 98
3.8.4 Mounted and Fully Integrated Fabry–Pérots 99
3.8.5 Planar Optics 101
3.8.6 Photonics Outlook 102
3.9 Chip Dicing, Mounting, and Bonding 104
3.10 Further Integration and Portability 106
3.11 Conclusion and Outlook 109
References 110

Part Two Ultracold Atoms near a Surface 119

4 Atoms at Micrometer Distances from a Macroscopic Body 121
 Stefan Scheel and E.A. Hinds
4.1 Introduction 121
4.2 Principles of QED in Dielectrics 123
4.3 Relaxation Rates near a Surface 126
4.3.1 Spin Flips near a Dielectric or Metallic Surface 126
4.3.2 Spin Flips near a Superconductor 130
4.3.3 Transverse Spin Relaxation 132
4.3.4 Heating 133
4.3.5 Electric Dipole Coupling of Molecules to a Surface 134
Contents

4.4 Casimir–Polder Forces 138
4.5 Closing Remarks 144
References 145

5 Interaction of Atoms, Ions, and Molecules with Surfaces 147
Carsten Henkel
5.1 Qualitative Overview 147
5.1.1 Electromagnetic Dipole Moments 148
5.1.2 Electromagnetic Field Strengths 149
5.1.3 Digression: Surface Green Functions 151
5.2 Interaction Potentials 153
5.2.1 Charges and Permanent Dipoles 153
5.2.2 Van der Waals Potential 154
5.2.3 Casimir–Polder Potential 155
5.2.4 Recent Developments 156
5.3 Surface-Induced Atomic Transitions 157
5.3.1 Visible Frequencies: Spontaneous Emission 158
5.3.2 Thermal Frequencies: Spin-Flips 159
5.3.3 Trap Heating 161
5.3.4 Atom Chips and Decoherence 162
5.4 Perspectives 165
References 166

Part Three Coherence on Atom Chips 171

6 Diffraction and Interference of a Bose–Einstein Condensate Scattered from an Atom Chip-Based Magnetic Lattice 173
A. Günther, T.E. Judd, J. Fortágh and C. Zimmermann
6.1 Introduction 173
6.2 Experimental Setup 174
6.2.1 The BEC Apparatus 174
6.2.2 The Magnetic Lattice Chip 177
6.3 The Magnetic Lattice Potential 178
6.3.1 Infinite Lattice 178
6.3.2 Finite Size Effects 181
6.3.3 The Double Meander Potential 182
6.4 Diffraction and Interference 184
6.4.1 Diffraction Scheme 184
6.4.2 Theoretical Model for the Interaction 185
6.4.3 Diffraction in the Raman–Nath Regime 189
6.4.4 Evolution of the Wave Function after the Lattice Interaction 190
6.5 Ballistic Expansion and Phase Imprinting 194
6.6 Experimental Results 195
6.7 Effect of Atomic Interactions 202
6.7.1 Modeling BEC Surface Diffraction 202
6.7.2 Density Profile Dynamics 203
References 206
6.7.3 Phase Modification by Inter-Atomic Interactions 204
6.7.4 Comparison of the Interacting Theory with Experiment 205
6.7.5 Locating the Low-Interaction Regime 206
6.8 Conclusion 207
References 208

7 Interferometry with Bose–Einstein Condensates on Atom Chips 211
Thorsten Schumm, Stephanie Manz, Robert Böcker, David A. Smith and Jörg Schmiedmayer

7.1 Introduction 211
7.2 Atom Chip BEC Splitters Based on Static Fields 213
7.2.1 Transverse Splitting 213
7.2.1.1 The Two-Wire Splitter 214
7.2.1.2 The Five-Wire Splitter 216
7.2.1.3 The Y Splitter 218
7.2.2 Longitudinal Splitting 221
7.2.3 Electrostatic Splitter 222
7.3 Atom Chip BEC Splitters Based on Dressed Adiabatic Potentials 224
7.3.1 Dressed Adiabatic State Potentials 225
7.3.2 A BEC Splitter Based on Dressed Adiabatic State Potentials 228
7.3.3 Beyond the Rotating-Wave Approximation 230
7.3.4 Implementation on an Atom Chip 231
7.3.5 Advantages of RF-Induced Splitters over Static Splitters 232
7.4 Matter–Wave Interferometry with Bose–Einstein Condensates 234
7.4.1 Theoretical Aspects 234
7.4.2 Experimental Realizations 238
7.4.2.1 Coherent Splitting on Atom Chips 239
7.4.2.2 Interference of Independent Condensates 240
7.4.2.3 Phase Dynamics of Split Condensates 240
7.4.2.4 Merging of Split Condensates 245
7.5 Interferometry with 1D quasi condensates 246
7.5.1 Coherently Split 1D BECs: Coherence Dynamics 247
7.5.1.1 Decoherence of Uncoupled 1D Systems 249
7.5.1.2 Coherence Dynamics for Coupled 1D Condensates 251
7.5.2 Independent 1D BECs: Noise Statistics of Interference Amplitude 252
7.5.2.1 Average Interference Amplitude Square 253
7.5.2.2 Full Counting Statistics of Interference Amplitude 255
7.6 Summary and Outlook 257
References 259

8 Microchip-Based Trapped-Atom Clocks 265
Vladan Vuletić, Ian D. Leroux and Monika H. Schleier-Smith

8.1 Basic Principles 265
8.2 Atomic-Fountain versus Trapped-Atom Clocks 265
8.3 Optical-Transition Clocks versus Microwave Clocks 267
8.4 Clocks with Magnetically Trapped Atoms: Fundamental Limits to Performance 267
8.5 Clocks with Magnetically Trapped Atoms: Experimental Demonstrations 271
8.6 Readout in Trapped-Atom Clocks 274
8.7 Spin Squeezing 277
References 278

9 Quantum Information Processing with Atom Chips 283
Philipp Treutlein, Antonio Negretti and Tommaso Calarco
9.1 Introduction 283
9.2 Ingredients for QIP with Atom Chips 284
9.3 Qubit States with Long Coherence Lifetime 285
9.4 Qubit Rotations (Single-Qubit Gates) 288
9.5 Single-Qubit Readout (Single-Atom Detection) 290
9.6 Single-Qubit Preparation (Single-Atom Preparation) 291
9.7 Conditional Dynamics (Two-Qubit Gates) 291
9.7.1 Internal-State Qubits and Collisional Interactions 292
9.7.2 Motional-State Qubits and Collisional Interactions 298
9.7.3 Alternative Chip-Specific Approaches to Entanglement Generation 300
9.7.4 Cavity-QED-Based Schemes 300
9.7.5 Quantum Gate Schemes that Can Be Adapted from Other Contexts 301
9.8 Hybrid Approaches to QIP on a Chip 303
9.8.1 Hybrid Approaches to Entanglement Generation 303
9.8.2 Interfacing Atoms (Storage/Processing Qubits) with Photons (Flying Qubits) 304
9.8.3 Quantum Information Technology for Precision Measurement and Other Applications 304
9.9 Conclusion and Outlook 305
References 305

Part Four New Directions 309
10 Cryogenic Atom Chips 311
Gilles Nogues, Adrian Lupschuc, Andreas Emmert, Michel Brune, Jean-Michel Raimond and Serge Haroche
10.1 Introduction 311
10.2 Superconducting Atom Chip Setup: Similarities and Differences with Conventional Atom Chips 312
10.2.1 Experimental Considerations 312
10.2.1.1 Chip Fabrication and Wiring 312
10.2.1.2 The Cryogenic Cell 314
10.2.2 Trapping and Cooling: First Results 316
10.2.2.1 Magnetic Trap 316
10.2.2.2 Forced Evaporation and Quantum Degeneracy 317
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Perspectives for Cryogenic Atom Chips: A New Realm of Investigations</td>
<td>319</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Probing the Superconducting Film Current Distribution</td>
<td>319</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Integration of Atom Chips with Superconducting Circuit Elements</td>
<td>321</td>
</tr>
<tr>
<td>10.3.2.1</td>
<td>Coupling with a Superconducting Qubit</td>
<td>321</td>
</tr>
<tr>
<td>10.3.2.2</td>
<td>Coupling with a Superconducting Resonator: On-Chip CQED</td>
<td>322</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Atom Chips for Circular Rydberg States</td>
<td>325</td>
</tr>
<tr>
<td>10.4</td>
<td>Conclusion</td>
<td>328</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>329</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Atom Chips and One-Dimensional Bose Gases</th>
<th>331</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>331</td>
</tr>
<tr>
<td>11.2</td>
<td>Regimes of One-Dimensional Gases</td>
<td>332</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Strongly versus Weakly Interacting Regimes</td>
<td>334</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Nearly Ideal Gas Regime</td>
<td>335</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Quasi-Condensate Regime</td>
<td>338</td>
</tr>
<tr>
<td>11.2.3.1</td>
<td>Density Fluctuations</td>
<td>340</td>
</tr>
<tr>
<td>11.2.3.2</td>
<td>Phase Fluctuations</td>
<td>341</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Exact Thermodynamics</td>
<td>342</td>
</tr>
<tr>
<td>11.3</td>
<td>1D Gases in the Real World</td>
<td>345</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Transverse Trapping and Nearly 1D Bose Gases</td>
<td>345</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Applying 1D Thermodynamics to a 3D Trapped Gas</td>
<td>347</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Longitudinal Trapping</td>
<td>347</td>
</tr>
<tr>
<td>11.3.3.1</td>
<td>Local Density Approximation</td>
<td>348</td>
</tr>
<tr>
<td>11.3.3.2</td>
<td>Validity of the Local Density Approximation</td>
<td>349</td>
</tr>
<tr>
<td>11.3.4</td>
<td>3D Physics versus 1D Physics</td>
<td>349</td>
</tr>
<tr>
<td>11.4</td>
<td>Experiments</td>
<td>351</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Failure of the Hartree–Fock Model</td>
<td>352</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Yang–Yang Analysis</td>
<td>353</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Measurements of Density Fluctuations</td>
<td>355</td>
</tr>
<tr>
<td>11.4.3.1</td>
<td>A Local Density Analysis</td>
<td>355</td>
</tr>
<tr>
<td>11.4.3.2</td>
<td>Ideal Gas Regime: Observation of Bunching</td>
<td>356</td>
</tr>
<tr>
<td>11.4.3.3</td>
<td>Quasi-Condensate Regime: Saturation of Atom Number Fluctuations</td>
<td>358</td>
</tr>
<tr>
<td>11.5</td>
<td>Conclusion</td>
<td>359</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>Fermions on Atom Chips</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>365</td>
</tr>
<tr>
<td>12.2</td>
<td>Theory of Ideal Fermi Gases</td>
<td>366</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Thermodynamics</td>
<td>366</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Density Distribution</td>
<td>368</td>
</tr>
</tbody>
</table>
12.2.3 Crossover to Fermi Degeneracy 370
12.3 The Atom Chip 371
12.3.1 Chip Construction and Wire Pattern 372
12.3.2 Electrical and Mechanical Connections 372
12.3.3 The Z-Wire Magnetic Trap 373
12.4 Loading the Microtrap 373
12.4.1 Laser Cooling and Magnetic Transport to the Chip 374
12.4.2 Loading Bosons and Fermions onto the Atom Chip 374
12.4.3 Effective Trap Volume 375
12.4.4 A Full Tank of Atoms: Maximum Trapped Atom Number 376
12.4.5 Effect of Geometry on Loaded Atom Number 377
12.5 Rapid Sympathetic Cooling of a K-Rb Mixture 377
12.5.1 Forced Sympathetic RF Evaporation 378
12.5.2 K-Rb Cross-Thermalization 379
12.5.3 Density-Dependent Loss 380
12.5.4 Required Temperature 380
12.5.5 Experimental Signatures of Fermi Degeneracy 381
12.6 Species-Selective RF Manipulation 382
12.6.1 Sympathetic RF Evaporation 383
12.6.2 Species-Selective Double Wells 385
12.7 Fermions in an Optical Dipole Trap near an Atom Chip 387
12.7.1 Optical Trap Setup 388
12.7.2 Loading the Optical Trap 388
12.7.3 Microwave and RF Manipulation 389
12.8 Discussion and Future Outlook 390
References 391

13 Micro-Fabricated Chip Traps for Ions 395
 J.M. Amini, J. Britton, D. Leibfried and D.J. Wineland
13.1 Introduction 395
13.2 Radio-Frequency Ion Traps 396
13.2.1 Motion of Ions in a Spatially Inhomogeneous RF Field 396
13.2.2 Electrode Geometries for Linear Quadrupole Traps 398
13.3 Design Considerations for Paul Traps 399
13.3.1 Doppler Cooling 399
13.3.2 Micromotion 401
13.3.3 Exposed Dielectric 402
13.3.4 Loading Ions 403
13.3.5 Electrical Connections 404
13.3.6 Motional Heating 405
13.4 Measuring Heating Rates 406
13.5 Multiple Trapping Zones 407
13.6 Trap Modeling 408
13.6.1 Modeling 3D Geometries 408
13.6.2 Analytic Solutions for Surface-Electrode Traps 409
Preface

This book intends to give both an introduction and an in-depth review of the beautiful physics being done with atom chips. Topics range from the manipulation of single atoms to the quantum entanglement between many atoms, and from interferometry with atomic matter waves to studies of fundamental atom–surface interactions.

For about three decades researchers have used magnetic and electric fields from DC to optical frequencies to confine neutral atoms for a variety of experiments and applications. The term *atom chip* has come to designate setups where microscopic or micro-fabricated structures, typically confined to a surface, generate three-dimensional trapping fields in the vicinity of the surface.

At its inception, the atom chip was regarded primarily as a tool to conveniently generate electromagnetic fields varying on a small length scale, and as such is related to early prototypes of magnetic mirrors. In fact, the attainment of Bose–Einstein condensation on a chip in 2001 in Tübingen and Munich was the first landmark that brought atom chips to the attention of the physics community at large. Since then, a growing number of research groups has adopted microchips as a convenient and fast method for the creation of Bose–Einstein condensates (BECs), and now also degenerate Fermi gases.

The strongly confining, complex, multi-parameter potentials that can be realized with atom chips have enabled experimentalists to explore new situations. For example, studies of one-dimensional quantum gases are benefitting from extremely elongated single traps that can be generated on atom chips, and BECs have been diffracted from specifically designed magnetic lattices realized on the chip surface.

However, atom chips are not merely devices to form atom traps by a combination of conductors and insulators on a surface. Atom chips promise rich functionality and integrability, and possibly nano-scale miniaturization, as advertised early on by a number of researchers in the field. The small length scale well matched to the condensate size and proximity of a solid surface have opened up and driven further research possibilities. The first and perhaps most immediate example is the investigation of fundamental surface-induced forces, such as the van der Waals and Casimir–Polder forces. This field has progressed and expanded considerably due to the close and stimulating interaction between atom chip experimentalists and theorists. Furthermore, the repertoire of fields and interactions used on atom chips
has grown to include radiofrequency and microwave potentials, resonant and far-detuned optical fields in miniature optical devices, as well as surface interactions with micro-mechanical structures. In each case, the small-scale, near-field situation of the atom chip has been exploited in ingenious ways to create new and rich physical situations that go beyond the possibilities of macroscopic experiments. Examples include coupling of a BEC to an oscillating mechanical cantilever, cavity quantum electrodynamics experiments with BECs, and some of the most beautiful condensate interferometry experiments performed so far.

The combination of these features makes atom chips an interesting platform for quantum information and quantum simulation experiments. This has also motivated the development of the newest family of atom chips, surface-electrode-based ion traps, which present both similarities and interesting differences compared to their neutral-atom counterparts.

A third area has emerged where atom chips are used as a means to construct the most compact and robust ultra-cold atom devices. The very recent demonstration of BEC in microgravity was enabled by an atom chip. Trapped-atom clocks on atom chips are being explored as promising secondary frequency standards. The idea of “integrated atom optics” on atom chips as a means to build atom interferometers emerged with the first atom chip experiments, but is certainly still in its infancy today. Last but not least, experiments with BECs in cryogenic environments also benefit from the small size and robustness of atom chips.

This book represents a collective effort by the community of atom chip researchers to outline the state of their knowledge as of 2009/2010. Each chapter starts with a thorough introduction before exposing the state of the art on a specific topic. Additionally, there are introductory chapters describing the particularities of designing magnetic potentials and producing BECs on atom chips, as well as on atom chip fabrication. The latter is discussed in a tutorial style and sufficient detail to enable a researcher with minimal micro-fabrication knowledge to start fabricating atom chips. In this way, we hope that the book will be valuable for students and researchers who are entering the field of atom chips or are active in one of the neighboring fields, but also for anyone desiring to get an overview of this beautiful and active area of contemporary quantum physics.

Paris and Cambridge, June 2010

Jakob Reichel and Vladan Vuletić
List of Contributors

Jason M. Amini
Signature Technology Laboratory
Georgia Technology Research Institute
400 Tenth Street
Atlanta, GA 30318
USA

Seth Aubin
Department of Physics
College of William and Mary
Williamsburg, VA 23185
USA

Alma B. Bardon
Department of Physics
University of Toronto
60 St. George Street
Toronto, Ontario M5S 1A7
Canada

Isabelle Bouchoule
Laboratoire Charles Fabry de l’Institut d’Optique
Campus Polytechnique RD 128
91127 Palaiseau Cedex
France

Joe Britton
Time and Frequency Division
National Institute of Standards and Technology
325 Broadway
Boulder, CO 80305
USA

Michel Brune
Laboratoire Kastler Brossel de l’E.N.S.
24, rue Lhomond
75231 Paris Cedex 05
France

Robert Bücker
Atominstutit der Österreichischen Universitäten
TU Wien
Stadionallee 2
1020 Wien
Austria

Tommaso Calarco
Institut für Quanteninformationsverarbeitung
Universität Ulm
Albert-Einstein-Allee 11
89069 Ulm
Germany

Atom Chips. Edited by Jakob Reichel and Vladan Vuletić
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40755-2
Andreas Emmert
Laboratoire Kastler Brossel de l’E.N.S.
24, rue Lhomond
75231 Paris Cedex 05
France

Marcius H. T. Extavour
Ontario Power Generation
700 University Avenue
Toronto, Ontario
Canada, M5G 1X6

Ron Folman
Atom Chip Group
Ben-Gurion University
Be’er Sheva, 84105
Israel

József Fortágh
Physikalisches Institut
Universität Tübingen
Auf der Morgenstelle 14
72076 Tübingen
Germany

A. Günther
Physikalisches Institut
Universität Tübingen
Auf der Morgenstelle 14
72076 Tübingen
Germany

Peter Hannaford
Centre for Atom Optics & Ultrafast Spectroscopy
Faculty of Engineering and Industrial Science
Swinburne University of Technology
Serpells Lane,
Mail H38, PO Box 218
Hawthorn, Victoria 3122
Australia

Serge Haroche
Laboratoire Kastler Brossel de l’E.N.S.
24, rue Lhomond
75231 Paris Cedex 05
France

Carsten Henkel
Institut für Physik und Astronomie
Campus Golm
Universität Potsdam
14476 Potsdam
Germany

Edward A. Hinds
Centre for Cold Matter
Blackett Laboratory
Imperial College London
Prince Consort Road
London SW7 2AZ
United Kingdom

Thomas E. Judd
Physikalisches Institut
Universität Tübingen
Auf der Morgenstelle 14
72076 Tübingen
Germany

Lindsay J. LeBlanc
Department of Physics
University of Toronto
60 St. George Street
Toronto, Ontario M5S 1A7
Canada

Dietrich Leibfried
Time and Frequency Division
National Institute of Standards and Technology
325 Broadway
Boulder, CO 80305
USA
Ian D. Leroux
MIT Department of Physics
77 Massachusetts Avenue
Cambridge, MA 02139
USA

Adrian Lupaşcu
Institute for Quantum Computing
University of Waterloo
200 University Ave. W.
Waterloo, ON N2L 3G1
Canada

Stephanie Manz
Atominstitut der Österreichischen
Universitäten
TU Wien
Stadionallee 2
1020 Wien
Austria

Jason McKeever
Entanglement Technologies
Palo Alto, CA 94306
USA

Stefan Myrskog
Morgan Solar Inc.
30 Ordnance St.
Toronto, Ontario M6K 1A2
Canada

Antonio Negretti
Institut für Quanteninformationsverarbeitung
Universität Ulm
Albert-Einstein-Allee 11
89069 Ulm
Germany

Gilles Nogues
Institut Neel
25 avenue des Martyrs
bâtiment T, BP 166
38042 Grenoble cedex 9

Jean-Michel Raimond
Laboratoire Kastler Brossel de l’E.N.S.
24, rue Lhomond
75231 Paris Cedex 05
France

Jakob Reichel
Laboratoire Kastler Brossel de l’E.N.S.
24, rue Lhomond
75231 Paris Cedex 05
France

Stefan Scheel
Blackett Laboratory
Imperial College London
Prince Consort Road
London SW7 2AZ
United Kingdom

Monika H. Schleier-Smith
MIT Department of Physics
77 Massachusetts Avenue
Cambridge, MA 02139
USA

Jörg Schmiedmayer
Atominstitut der Österreichischen
Universitäten
TU Wien
Stadionallee 2
1020 Vienna
Austria

Thorsten Schumm
Atominstitut der Österreichischen
Universitäten
TU Wien
Stadionallee 2
1020 Wien
Austria
Andrei Sidorov
Centre for Atom Optics & Ultrafast Spectroscopy
Faculty of Engineering and Industrial Science
Swinburne University of Technology
Serpells Lane,
Mail H38, PO Box 218
Hawthorn, Victoria 3122
Australia

David A. Smith
Atominstitut der Österreichischen Universitäten
TU Wien
Stadionallee 2
1020 Wien
Austria

Joseph H. Thywissen
Department of Physics
University of Toronto
60 St. George Street
Toronto, Ontario M5S 1A7
Canada

Philipp Treutlein
University of Basel
Department of Physics
Klingelbergstrasse 82
CH-4056 Basel
Switzerland

N. J. (Klaasjan) van Druten
Van der Waals-Zeeman Instituut
Universiteit van Amsterdam
Valckenierstraat 65-67
1018 XE Amsterdam
Netherlands

Vladan Vuletić
MIT Department of Physics
77 Massachusetts Avenue
Cambridge, MA 02139
USA

Christopher I. Westbrook
Laboratoire Charles Fabry de l’Institut d’Optique
Campus Polytechnique RD 128
91127 Palaiseau Cedex
France

David J. Wineland
Time and Frequency Division
National Institute of Standards and Technology
325 Broadway
Boulder, CO 80305
USA

C. Zimmermann
Physikalisches Institut
Universität Tübingen
Auf der Morgenstelle 14
72076 Tübingen
Germany